Exploring the limitations of forward osmosis for direct hydroponic fertigation: Impact of ion transfer and fertilizer composition on effective dilution

There is a need for water reuse technologies and applications to minimize the imminent water crisis, caused by the world population growth, the reduction of freshwater resources and the increasing water pollution. Fertilizer-drawn forward osmosis (FDFO) is a promising process capable of simultaneously extracting fresh water from low-quality sources as feed water (e.g., wastewater or greywater), while diluting fertilizer solutions for direct fertigation, avoiding the demand for freshwater for irrigation. Achieving an adequate level of dilution for direct fertigation is a key element to be evaluated for the implementation of FDFO. This study assessed the performance of the forward osmosis process to dilute fertilizer solutions to be applied directly in hydroponic systems. Experiments were carried out under conditions close to osmotic equilibrium to evaluate the process performance up to the maximum dilution point. Tests were carried out with individual and blended fertilizers (i.e., (NH4)2HPO4 or DAP, and KNO3) used as draw solution (DS) and with deionized water or individual salts (NaCl, MgCl2, Na2SO4, MgSO4) in the feed solution (FS). Water fluxes and reverse salt fluxes indicated that both fertilizer DS composition and concentrations play a fundamental role in the process. Suitable nutrient concentrations to be directly applied without further dilution for N, P and K (119, 40, 264 mg.L−1 respectively) were obtained with deionized water as FS and blended DAP (0.025 M) and KNO3 (0.15 M) as DS. However, important fertilizer losses from DS to FS were observed, being the highest for NO3 (33–70% losses from DS to FS). The presence of salts in FS decreased the water fluxes and the DS dilution due to the osmotic equilibrium caused by a greater loss of nutrients from DS to FS (up to 100%), compared with tests using just deionized water as FS. This study points out the potential limitations of the FDFO process, due to the high solute fluxes and low water fluxes in conditions close to osmotic equilibrium.

Additional Info

  • Year: 2022
  • Authors: Sbardella L., Blandin G., Fàbregas A.,Carlos Real Real J., Serra Clusellas A., Ferrari F., Bosch C., Martinez-Lladó X.
  • Reference: Chemical Engineering Journal, Volume 43415, April 2022, Article number 134448

Search articles

Title

Year

Authors

Laboratory of Chemical and Enviromental Engineering

Institut de Medi Ambient
Universitat de Girona
Campus Montilivi
17003 Girona

Parc Científic i Tecnològic de la UdG
Edifici Jaume Casademont, Porta B
Pic de Peguera, 15
17003 Girona
Tel. +34 972 41 98 59
info@lequia.udg.cat

 

Search

Keyword

Social Media

Follow us on ...

Facebook Twitter Youtube Linkedin

NOTE! This site uses cookies and similar technologies. If you not change browser settings, you agree to it. Cookie Policy