Integrated assessment of sulfate-based AOPs for pharmaceutical active compound removal from wastewater

Advanced oxidation processes (AOPs) have been proposed as tertiary treatments for municipal WWTP effluents. UV-activated peroxydisulfate (PDS) and peroxymonosulfate (PMS) are viable technological alternatives for treating secondary WWTP effluent containing PhACs. This article examines the feasibility of applying UV/PDS and UV/PMS technologies at pilot scale, assessing their energy and cost requirements. In addition, life cycle assessment (LCA) impacts associated with the treatment of 1 m³ of wastewater with an effective average pharmaceutical active compounds (PhACs) removal of 80% has also been evaluated. Photolysis (UV) treatment alone was not capable of degrading PhACs to a sufficient extent in WWTP secondary effluent. The addition of 0.4 mmol of PDS or PMS, applying 416 mJ/cm2 of UV fluence, resulted in average removals of 84% and 85% for UV/PDS and UV/PMS, respectively. The electrical energy (kWh) required to degrade the mix of PhACs by one order of magnitude in 1 m³ of contaminated water was calculated as 0.9 kWh/m³/order and 0.8 kWh/m³/order 4 for UV/PDS and UV/PMS, respectively. However, the overall cost, including operation, materials and maintenance, of applying UV/PDS and UV/PMS, based on an average PhAC removal of 80%, was 0.088 €/m³ and 0.280 €/m³, respectively. From the sustainability assessment, the factors with the greatest environmental footprint for the UV/PDS process were chemical production (PDS: 52.9%, PMS: 85%) and electricity consumption (UV/PDS: 33.4%, UV/PMS: 11.2). Finally, the normalized environmental impact analysis showed that UV/PDS was associated with an environmental footprint three times lower than UV/PMS. The overall assessment revealed that UV/PDS is preferable to UV/PMS to remove PhACs in secondary effluents of municipal WWTPs having a lower economic and environmental impact.

Additional Info

  • Year: 2020
  • Authors: Sbardella L., Gala I., Comas J., Carbonell S.M., Rodríguez-Roda I.,Gernjak W.
  • Reference: Journal of Cleaner ProductionVolume 2601 July 2020 Article number 121014

Search articles

Title

Year

Authors

Laboratory of Chemical and Enviromental Engineering

Institut de Medi Ambient
Universitat de Girona
Campus Montilivi
17003 Girona

Parc Científic i Tecnològic de la UdG
Edifici Jaume Casademont, Porta B
Pic de Peguera, 15
17003 Girona
Tel. +34 972 41 98 59
info@lequia.udg.cat

 

Search

Keyword

Social Media

Follow us on ...

Facebook Twitter Youtube Linkedin

NOTE! This site uses cookies and similar technologies. If you not change browser settings, you agree to it. Cookie Policy