Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential

Spiral wound thin film composite (TFC) polyamide (PA) membranes dominate the desalination market. Despite the proven performance of reverse osmosis (RO) membranes, they are periodically replaced and usually disposed of in landfills. The present study investigates the effect of using a diverse combination of free chlorine solutions (from 1 to 12,240 ppm) and exposure times (from 0.5 to 6500 h) with two purposes, namely: i) to simulate accelerated membrane ageing (low free chlorine concentration solutions) and ii) to optimize the existing recycling process of end-of-life RO membranes. Membrane coupons were taken from 8″ diameter modules (pristine and old). Membrane permeability and rejection coefficients were obtained by filtering synthetic brackish water (BW). Membrane surfaces were characterized by SEM and ATR-FTIR techniques. This work shows distinct PA vulnerability depending on membrane design (brackish water (BWRO) and seawater (SWRO) reverse osmosis membranes). Results reveal that the use of the exposure level parameter (ppm·h) as an independent basis for comparing free chlorine exposure must be carefully employed during ageing assessments and monitoring transition between nanofiltration (NF)-like performance to ultrafiltration (UF)-like performance. However, it can be used consistently to convert end-of-life RO membrane into NF-like recycled membranes using concentrations higher than 10 ppm.

Additional Info

  • Year: 2019
  • Authors: García-Pacheco, R., Landaburu-Aguirre, J., Lejarazu-Larrañaga, A., Rodríguez-Sáez, L., Molina, S., Ransome, T., García-Calvo, E.
  • Reference: Desalination 1 May 2019, Pages 133-143

Search articles

Title

Year

Authors

Laboratory of Chemical and Enviromental Engineering

Institut de Medi Ambient
Universitat de Girona
Campus Montilivi
17003 Girona

Parc Científic i Tecnològic de la UdG
Edifici Jaume Casademont, Porta B
Pic de Peguera, 15
17003 Girona
Tel. +34 972 41 98 59
info@lequia.udg.cat

 

Search

Keyword

Social Media

Follow us on ...

Facebook Twitter Youtube Linkedin

NOTE! This site uses cookies and similar technologies. If you not change browser settings, you agree to it. Cookie Policy