New insights into the influence of activated carbon surface oxygen groups on H2O2 decomposition and oxidation of pre-adsorbed volatile organic compounds

In this study, the influence of the surface oxygen groups of activated carbons (ACs) on the decomposition of H2O2 and the consequent radical dotOH radicals generation is investigated. The oxidation of pre-adsorbed volatile organic compounds by H2O2 is also studied. Four ACs, with low percentage of inorganic matter (<0.2%), similar textural properties but differing in their surface oxygen content were evaluated. The surface oxygen groups of the ACs were characterised by using appropriate characterisation techniques (temperature programmed desorption and X-ray photoelectron spectroscopy). The kinetic curves of H2O2 decomposition were very similar for all the ACs. However, different profiles in the production of radical dotOH radicals were observed. radical dotOH radicals generation seemed to be promoted by low surface oxygen contents. Oxidation of two volatile organic compounds (VOCs) of different polarity, methyl ethyl ketone (MEK) and toluene, pre-adsorbed onto the ACs was finally investigated. H2O2 was used as oxidising agent. Both VOCs presented similar maximum oxidation rates, around 70%, in spite of their different hydrophobicity. Some evidences are provided supporting that oxidation of pre-adsorbed VOCs can take place in the inner pore structure of the ACs.

Additional Info

Search articles




Laboratory of Chemical and Enviromental Engineering

Institut de Medi Ambient
Universitat de Girona
Campus Montilivi
17003 Girona

Parc Científic i Tecnològic de la UdG
Edifici Jaume Casademont, Porta B
Pic de Peguera, 15
17003 Girona
Tel. +34 972 41 98 59




Social Media

Follow us on ...

Facebook Twitter Youtube Linkedin

NOTE! This site uses cookies and similar technologies. If you not change browser settings, you agree to it. Cookie Policy