Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives

Mined phosphate rock is the largest source of phosphorus (P) for use in agriculture and agro-industry, but it also is a finite resource irregularly distributed around the world. Alternatively, waste water is a renewable source of P, available at the local scale. In waste water treatment, biological nitrogen (N) removal is applied according to a wide range of variants targeting the abatement of the ammonium content. Ammonium oxidation to nitrate can also be considered to mitigate ammonia emission, while enabling N recovery. This review focuses on the analysis of alternatives for coupling biological N treatment and phosphate precipitation when treating waste water in view of producing P-rich materials easily usable as fertilisers. Phosphate precipitation can be applied before (upstream configuration), together with (concomitant configuration), and after (downstream configuration) N treatment; i.e., chemically induced as a conditioning pre-treatment, biologically induced inside the reactor, and chemically induced as a refining post-treatment. Characteristics of the recovered products differ significantly depending on the case studied. Currently, precipitated phosphate salts are not typified in the European fertiliser regulation, and this fact limits marketability. Nonetheless, this topic is in progress. The potential requirements to be complied by these materials to be covered by the regulation are overviewed. The insights given will help in identifying enhanced integrated approaches for waste water treatment, pointing out significant needs for subsequent agronomic valorisation of the recovered phosphate salts, according to the paradigms of the circular economy, sustainability, and environmental protection. 

Informació addicional

  • Any: 2020
  • Autors: Magrí A., Carreras-Sempere M., Biel C., Colprim J.
  • Referència: Agronomy, Open Access, Volume 10, Issue 7, July 2020, Article number 1039

Cercar articles

Nom/Títol

Any

Autors

Laboratori d’Enginyeria Química i Ambiental

Institut de Medi Ambient
Universitat de Girona
Campus Montilivi
17003 Girona

Parc Científic i Tecnològic de la UdG
Edifici Jaume Casademont, Porta B
Pic de Peguera, 15
17003 Girona
Tel. +34 972 41 98 59
info@lequia.udg.cat

 

Cercar

Xarxes socials

Segueix-nos a ...

Facebook Twitter Youtube Linkedin

NOTE! This site uses cookies and similar technologies. If you not change browser settings, you agree to it. Cookie Policy